اعتیاد و ناقل‌های شیمیایی مغز

دکتر محمد رضا زرین دست
استاد گروه فارماکولوژی دانشگاه علوم پزشکی تهران

خواص بیولوژیکی مواد اعتیاد آور بیشتر مورد توجه قرار گرفت.

کشف با اهمیت دیگر در این زمینه هاینریش میلر

ولندز به سال 1934 بود. این دانشمندان نشان دادند که

حیوانات آزمایشگاهی در صورت تغذیه شونده از دیگر مغز

به طور اتفاقی این مواد مغز قهوه کانیکی وارد می‌کنند. این

پدیده به نام تغذیه داخل جذوری معروف گردید. این کشف

از جمله سه حالت اهمیت بود. اول این که این گونه تحریک مغز

توسط الکترود ماده محرک‌کننده کلوشید بی‌سیر و باعث

تقویت رفتارهای خاصی منتشر به ارائه‌ان آن می‌شود. دوم اینکه

این خاصیت در متان عالی‌ایستی نیز مشاهده می‌شود و

کانون‌های آنزیم‌شناسی خاصی این پدیده را نشان می‌دهد. تنها 2

سال طول کشید تا شواهدی به دست آید. میتی بین نیز با مواد

اعتیادزا نیز به نوع ممانی مغزی را تحریک می‌کند.

این کشف 40 سال فعالیت نمازی و پردر در زمینه

(ghtner 1997) بیولوژی مواد اعتیاد آور بود.

دروهایی که هدف سوء مصرف قرار می‌گیرند گملکی

دربای این خصوصی است که مصرف آنها با احساس لذت و

سرخوشی همراه است و در این سرخوشی تقویت یکننده

زایی و تقویت رفتار مختصر است. دوگرا Spragg

و در حیوانات نیز مشاهده می‌شود. اسپرگ

نمازی دارای جایگاه آزمایشگاهی به شکل قطعات

سایه سیاهی substantia nigra، هیپوکامپس است، همچنین
cabnphones، quecesthalum, cisterna، کرونکس پیشانی و

مغز قادمی و کانون‌های نیگر میسر

MFB: medial forebrain bundle

است. این مغز کانون‌های حسی، حرکتی، قشیری، لیمیک،

دیسکی و... در این مغز می‌باشد. اما به یک همکاری،

شکل کامل‌تر یک همکاری سایپانکیک نجویی این مواد ارتباط

MFB: medial forebrain bundle

و این فرضیه که پیامهای عصبی مرتبط با انت و پدیده توسط

زیر مجموعه‌ای از الافا مغز قادمی منتقل می‌شود. شکل
گرفت (Gardner & David 1999) زمانی که دانشمندان با تغییر مکان الکترودها در مغز حیوانات سعی داشتند کانولوواژ لذت و پاداش را تشخیص دهند، مطالعه متعادل تحقیقاتی کردند که زمانی پس از دریافت مدل الکترود داشته باشند که انگشتان اثر لذت بخشی بیشتری دارند. ممکن است مهم‌ترین نشانه که انگشتان سلول‌های حاوی دوازودار نیستند اثر لذت بخشی الکترود‌ها را در بین می‌برد و اگر سیستم دوپامین حیاتی را سیب کند، ممکن است تغییرات الکتریکی برای او لذت بخش نخواهد بود (Gardner & David 1999).

از طرفی تزیین کوکائین و بهره‌برداری به حیوانات با الکترود دوپامین در هسته اکوکومنس سه‌راه است (Wise 1995).

شکل 1- مدارهای مرتبط با لذت و پاداش در مغز یستاندارد در جهان بیش از ۱۲ میلیون ترکیب شیمیایی وجود دارد. ولی حیوانات آزمایشگاهی در جهان از آنها تاکنون انی ترکیباتی که این موارد هدف سوء مصرف انسان و حیوان واقع می‌شوند ولی ترکیبات دیگری نیستند. آنها مسلم است و به اشتباه نوازندگان شیمیایی درون این موارد خواص شیمیایی یا فارماکولوژیک آنها نیست. موارد از نظر ساختار شیمیایی نهایی به یکنوازی ندارند. (شکل ۲). خواص فارماکولوژیک آنها نیز متعدد و هر مواردی است. تنها مشخصه این موارد توانایی آنها در افزایش حاد فعلات در مدارهای مرتبط با لذت و پاداش در مغز است (Gardner & David 1999).
شکل ۲- ساختار شیمیایی ترکیبات مختلف اعیاد‌آور
عمدهای نیز در بر دارد و می‌تواند مأموریت را در تاثیب‌بی‌وند و
روباه‌های درمانی سومصرف مواد رهنمون سازد.

سفره‌گیر کی‌گاما (gamma-aminobutyric acid)
کی‌گاما (GABA) مهارتی در سیستم‌های حس یافته‌های پشت‌اندیس است.
فعالیت لیسنی سیستم باعث کاهش فعالیت نرونهای تنشی‌گیر
شکاف مغزی، نواحی تحت قشری، بیش‌ترین و تنشی‌گیر مغز
(Curtis et al. 1971) می‌گردد.

در اثر نوش‌کردن کی‌گاما به پایه‌های فناوری‌های باراندزه،
و الکتروفیزیولوژی معرفی شده، که در استرداد
Zarrindast & Oveis (1978) GABA به GABA و GABA
پرسی و دانشگاه دانش‌های پتیرکسی
Purkinje و سلول‌های داخلی دانه مخچه،
striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدنورژیک
سفره‌گیر آدنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدرنورژیک
سفره‌گیر آدرنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدرنورژیک
سفره‌گیر آدرنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدرنورژیک
سفره‌گیر آدرنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدرنورژیک
سفره‌گیر آدرنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین

سفره‌گیر آدرنورژیک
سفره‌گیر آدرنورژیک که از اصلی ترین سیستم‌های عصبی
بند است و ناقل شیمیایی عضلانه به نام آدنرژیال (API)
در یکی از انواع این خونیان، تاثیب‌بی‌وند و
فعالیت‌های عصبی مانند تحقیق و عملیات که در مغز‌های
با مغز و پایینی که در مغز انسان، سرکردن، سرسپوشی است
شناخته می‌شود. این سیستم با مغز نواحی بی‌پای هستند.
Striatum جسم مخچه، کورکرکس پیژانی
نواحی سلول‌های داخلی دانه مخچه و بال‌خون
نواحی پایینی بی‌پای هستند، همچنین
مواد مرتبط هستند می‌تواند به سیستم‌های آدنوزین، آدنوزین سیستم ایبوینت، کولو سیستم کیتین و تیکوتن اشاره کرد.

آدنوزین یک ناقل شیمیایی و تنظیم کننده سیستم عصبی A1، A2، A3 و A4 مركزی است. گیرنده‌های آدنوزین شامل 2 Riyadh (Dalziel & Westfall هستند (1994). انتواعی از گیرنده‌های A1 تمایل بالا به آدنوزین داشته و اثرات منفی آدنوزین را اعمال می‌کند. گیرنده‌های آدنوزین A2 توزیع کستردهای در مغز ویژه کورتکس، مخچه، تالاموس و هیپپاپرمی دارد. این گیرنده‌ها در تغذیه نیز پایه می‌شوند. گیرنده‌های A3 بر خلاف A1 توزیع محدودتری داشته و خواریان و A2 توزیع در جسم مختلط striatum و جسم دار. گیرنده‌های سیستم‌های نیز یک پروتئین با 8 اسید آمینه است که در تمام قسمتهای سیستم عصبی پستانداران وجود دارد. در بالایی و وجود زیرین، گیرنده‌های سیستم‌های در نواحی خاکستری قشر مغز، periaqueductal نواحی خاکستری اطراف قنات سپتیوسال و شاخ خلفی ventromedial هستند. grey matter

نخاع و وجود دارد (1998).

سیستم سروتونینی

تجمع اصلی اجسام سلولی نرونهای سروتونینی در ناحیه فوقانی پیل مغزی و یا مغز میانی به خصوص در هسته‌های سجافی raphe nuclei و سری است. اکسترون‌های این نرونهای به هسته‌های قاعدی سیستم لیمبیک و نفر مغز مرتبه‌ای می‌شوند.

تاکنون 7 نوع گیرنده سروتونینی 5HT1A شناسایی شده است که هریک دارای یک گروه مجزا خود به و خواص ویژه خود را دارند (Kaplan & Sadock 1998).

سایر سیستم‌ها

از جمله سایر سیستم‌های مغزی که با سیستم‌های مصرف

شکل 3- ارتباط سیستم‌های شیمیایی مختلف مغز با سیستم‌های مصرف
کشف گیرنده‌های افیون در مغز نیز به حضور ۲۵ سال پیش باز گردید. در ۱۹۹۲ گیرنده‌های خاصی در مغز یافت شدند که ترکیبات افیونی با قدرت بالایی به آنها منحل می‌شوند. اما سرعه‌ای سنوال از دنبال داشتمانان، شکل گیرنده‌ها و چاله‌های ایجاد شد. یکی از این آگاهیان نامی است که کشف شدند که ترکیبات افیونی به حضور خون‌سرانگیز و سرسانگیز بی‌رنگ‌ها و b-endorphin و dynorphin کشف شدند.

گیرنده‌ها و دینورفین در مغز گسترش فورانی دانست و در اثر نمای خطر و ویژه‌ترین دارند. همچنین، این نکته که مرکزی افتاده به کمک افتاده و بروز اولویت اختلالات مغزی. (Nestler 1992 انتقالیاً به این نکته می‌رسد که مسیر مغزی در از پیش این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند.

کاهش سیستم‌های فیزیولوژیک باعث محیط کنترل مصرف مواد افیونی می‌شود. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکته می‌رسد که این شک و مواد افیونی به این مایعات که چنین منظورهایی صورت گیرد ناشیند. در سه راه اثرات شرکت می‌کند. این نکته‌ها به این نکте
تجهیز نالوسكان بروز می‌کند، متوقف می‌کند (Zarrindast et al., 1995b)

این تاثیر با ترتیب آگونیست‌ها و آنتاگونیست‌های گیارا

بصورت داخل مغزی IP مبتنی آماده است.

کوله سسیتولین و وایستک

(Zarrindast et al., 1995) نشان داده شده است که آگونیست‌های گیارا کوله سسیتولین CCK-8 (cholecystokinin=CKK) غیر سولفات‌های مقاپس کم ناشانه قلم مصرف می‌رایند. در موش‌های سوزرتی (مکور کپیه سفید) وایستک گیارا به

CCK-8 با سیسته‌های CCK-A و CCK-B به شکل مشابهی با شکل سیسته‌های CCK-A و CCK-B در موش‌های مختلف دارند. از این که سرولپن یا CCK-A و CCK-B در موش‌های مختلف دارند، نشان می‌دهد که

کوله سسیتولین و وایستک می‌تواند در راه‌های مختلفی به

1991 ممکن است مورد گیربکسدر کاملاً مناسب بود. در شرایط مختلف، می‌تواند در موارد مختلف کار گرفته است و نشان نشان داده شده است که

Zarrindast et al., 1999a)

در حیوانات که یک درمان موثر می‌باشد. محققان می‌پذیرند نتایج نشان می‌دهد که

Zarrindast et al., 1999a)

در حالات مختلف می‌تواند قابل منطقه باشد. به شکل مشابهی با شکل سیسته‌های CCK-A و CCK-B در موش‌های مختلف دارند. از این که سرولپن یا

CCK-A و CCK-B در موش‌های مختلف دارند، نشان می‌دهد که

Zarrindast et al., 1999a)

نسبت به ترتیب آگونیست‌ها و آنتاگونیست‌های گیارا است

Zarrindast et al., 1999b)

اسبانسی‌های اصولی در بر می‌گیرد CNS با می‌کند.

کوله سسیتولین و وایستک

(Zarrindast et al., 1998)

سرولپن و وایستک

سیستم سروتونرژی در پدیده پرش ناشی از سلول مصرف

صرف موثر است. به نظر می‌رسد سیستم‌های

آدرنرژیک و سروتونرژی در پدیده پرش کامل به دو داروهای

اپیدورفین را به مهار دارد. شاید به دی اظهار باشد. یکی از کاهش‌های که برای سرکوب

برای آگونیست‌ها و آنتاگونیست‌های گیارا است. تحت حفظ شکل نشان

کوله سسیتولین و وایستک

(Zarrindast & Farzin, 1996)

نیکوتین احتمالاً باعث تحریک آزاداسیل پیده‌رفته

ایپیدورفین را به مهار دارد. شاید به دی اظهار باشد. یکی از کاهش‌های که برای سرکوب

برای آگونیست‌ها و آنتاگونیست‌های گیارا است. تحت حفظ شکل نشان

کوله سسیتولین و وایستک

(Zarrindast & Farzin, 1996)
و...
of gamma-aminobutyric acid (GABA) in morphine analgesia, tolerance and physical dependence. Life Science. 18: 1111-1124.


